metabelian, supersoluble, monomial, A-group
Aliases: C72⋊3C9, C7⋊2(C7⋊C9), C21.4(C7⋊C3), (C7×C21).3C3, C3.(C72⋊3C3), SmallGroup(441,7)
Series: Derived ►Chief ►Lower central ►Upper central
C72 — C72⋊3C9 |
Generators and relations for C72⋊3C9
G = < a,b,c | a7=b7=c9=1, ab=ba, cac-1=a2, cbc-1=b4 >
(1 27 29 49 11 44 56)(2 30 12 57 19 50 45)(3 13 20 37 31 58 51)(4 21 32 52 14 38 59)(5 33 15 60 22 53 39)(6 16 23 40 34 61 54)(7 24 35 46 17 41 62)(8 36 18 63 25 47 42)(9 10 26 43 28 55 48)
(1 56 44 11 49 29 27)(2 50 57 30 45 19 12)(3 37 51 20 58 13 31)(4 59 38 14 52 32 21)(5 53 60 33 39 22 15)(6 40 54 23 61 16 34)(7 62 41 17 46 35 24)(8 47 63 36 42 25 18)(9 43 48 26 55 10 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
G:=sub<Sym(63)| (1,27,29,49,11,44,56)(2,30,12,57,19,50,45)(3,13,20,37,31,58,51)(4,21,32,52,14,38,59)(5,33,15,60,22,53,39)(6,16,23,40,34,61,54)(7,24,35,46,17,41,62)(8,36,18,63,25,47,42)(9,10,26,43,28,55,48), (1,56,44,11,49,29,27)(2,50,57,30,45,19,12)(3,37,51,20,58,13,31)(4,59,38,14,52,32,21)(5,53,60,33,39,22,15)(6,40,54,23,61,16,34)(7,62,41,17,46,35,24)(8,47,63,36,42,25,18)(9,43,48,26,55,10,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)>;
G:=Group( (1,27,29,49,11,44,56)(2,30,12,57,19,50,45)(3,13,20,37,31,58,51)(4,21,32,52,14,38,59)(5,33,15,60,22,53,39)(6,16,23,40,34,61,54)(7,24,35,46,17,41,62)(8,36,18,63,25,47,42)(9,10,26,43,28,55,48), (1,56,44,11,49,29,27)(2,50,57,30,45,19,12)(3,37,51,20,58,13,31)(4,59,38,14,52,32,21)(5,53,60,33,39,22,15)(6,40,54,23,61,16,34)(7,62,41,17,46,35,24)(8,47,63,36,42,25,18)(9,43,48,26,55,10,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63) );
G=PermutationGroup([[(1,27,29,49,11,44,56),(2,30,12,57,19,50,45),(3,13,20,37,31,58,51),(4,21,32,52,14,38,59),(5,33,15,60,22,53,39),(6,16,23,40,34,61,54),(7,24,35,46,17,41,62),(8,36,18,63,25,47,42),(9,10,26,43,28,55,48)], [(1,56,44,11,49,29,27),(2,50,57,30,45,19,12),(3,37,51,20,58,13,31),(4,59,38,14,52,32,21),(5,53,60,33,39,22,15),(6,40,54,23,61,16,34),(7,62,41,17,46,35,24),(8,47,63,36,42,25,18),(9,43,48,26,55,10,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)]])
57 conjugacy classes
class | 1 | 3A | 3B | 7A | ··· | 7P | 9A | ··· | 9F | 21A | ··· | 21AF |
order | 1 | 3 | 3 | 7 | ··· | 7 | 9 | ··· | 9 | 21 | ··· | 21 |
size | 1 | 1 | 1 | 3 | ··· | 3 | 49 | ··· | 49 | 3 | ··· | 3 |
57 irreducible representations
dim | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | ||||||
image | C1 | C3 | C9 | C7⋊C3 | C7⋊C9 | C72⋊3C3 | C72⋊3C9 |
kernel | C72⋊3C9 | C7×C21 | C72 | C21 | C7 | C3 | C1 |
# reps | 1 | 2 | 6 | 4 | 8 | 12 | 24 |
Matrix representation of C72⋊3C9 ►in GL4(𝔽127) generated by
1 | 0 | 0 | 0 |
0 | 32 | 0 | 0 |
0 | 0 | 64 | 0 |
0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 2 |
99 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
G:=sub<GL(4,GF(127))| [1,0,0,0,0,32,0,0,0,0,64,0,0,0,0,8],[1,0,0,0,0,4,0,0,0,0,16,0,0,0,0,2],[99,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;
C72⋊3C9 in GAP, Magma, Sage, TeX
C_7^2\rtimes_3C_9
% in TeX
G:=Group("C7^2:3C9");
// GroupNames label
G:=SmallGroup(441,7);
// by ID
G=gap.SmallGroup(441,7);
# by ID
G:=PCGroup([4,-3,-3,-7,-7,12,434,2019]);
// Polycyclic
G:=Group<a,b,c|a^7=b^7=c^9=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^4>;
// generators/relations
Export