Copied to
clipboard

G = C723C9order 441 = 32·72

3rd semidirect product of C72 and C9 acting via C9/C3=C3

metabelian, supersoluble, monomial, A-group

Aliases: C723C9, C72(C7⋊C9), C21.4(C7⋊C3), (C7×C21).3C3, C3.(C723C3), SmallGroup(441,7)

Series: Derived Chief Lower central Upper central

C1C72 — C723C9
C1C7C72C7×C21 — C723C9
C72 — C723C9
C1C3

Generators and relations for C723C9
 G = < a,b,c | a7=b7=c9=1, ab=ba, cac-1=a2, cbc-1=b4 >

3C7
3C7
49C9
3C21
3C21
7C7⋊C9
7C7⋊C9

Smallest permutation representation of C723C9
On 63 points
Generators in S63
(1 27 29 49 11 44 56)(2 30 12 57 19 50 45)(3 13 20 37 31 58 51)(4 21 32 52 14 38 59)(5 33 15 60 22 53 39)(6 16 23 40 34 61 54)(7 24 35 46 17 41 62)(8 36 18 63 25 47 42)(9 10 26 43 28 55 48)
(1 56 44 11 49 29 27)(2 50 57 30 45 19 12)(3 37 51 20 58 13 31)(4 59 38 14 52 32 21)(5 53 60 33 39 22 15)(6 40 54 23 61 16 34)(7 62 41 17 46 35 24)(8 47 63 36 42 25 18)(9 43 48 26 55 10 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)

G:=sub<Sym(63)| (1,27,29,49,11,44,56)(2,30,12,57,19,50,45)(3,13,20,37,31,58,51)(4,21,32,52,14,38,59)(5,33,15,60,22,53,39)(6,16,23,40,34,61,54)(7,24,35,46,17,41,62)(8,36,18,63,25,47,42)(9,10,26,43,28,55,48), (1,56,44,11,49,29,27)(2,50,57,30,45,19,12)(3,37,51,20,58,13,31)(4,59,38,14,52,32,21)(5,53,60,33,39,22,15)(6,40,54,23,61,16,34)(7,62,41,17,46,35,24)(8,47,63,36,42,25,18)(9,43,48,26,55,10,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)>;

G:=Group( (1,27,29,49,11,44,56)(2,30,12,57,19,50,45)(3,13,20,37,31,58,51)(4,21,32,52,14,38,59)(5,33,15,60,22,53,39)(6,16,23,40,34,61,54)(7,24,35,46,17,41,62)(8,36,18,63,25,47,42)(9,10,26,43,28,55,48), (1,56,44,11,49,29,27)(2,50,57,30,45,19,12)(3,37,51,20,58,13,31)(4,59,38,14,52,32,21)(5,53,60,33,39,22,15)(6,40,54,23,61,16,34)(7,62,41,17,46,35,24)(8,47,63,36,42,25,18)(9,43,48,26,55,10,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63) );

G=PermutationGroup([[(1,27,29,49,11,44,56),(2,30,12,57,19,50,45),(3,13,20,37,31,58,51),(4,21,32,52,14,38,59),(5,33,15,60,22,53,39),(6,16,23,40,34,61,54),(7,24,35,46,17,41,62),(8,36,18,63,25,47,42),(9,10,26,43,28,55,48)], [(1,56,44,11,49,29,27),(2,50,57,30,45,19,12),(3,37,51,20,58,13,31),(4,59,38,14,52,32,21),(5,53,60,33,39,22,15),(6,40,54,23,61,16,34),(7,62,41,17,46,35,24),(8,47,63,36,42,25,18),(9,43,48,26,55,10,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)]])

57 conjugacy classes

class 1 3A3B7A···7P9A···9F21A···21AF
order1337···79···921···21
size1113···349···493···3

57 irreducible representations

dim1113333
type+
imageC1C3C9C7⋊C3C7⋊C9C723C3C723C9
kernelC723C9C7×C21C72C21C7C3C1
# reps126481224

Matrix representation of C723C9 in GL4(𝔽127) generated by

1000
03200
00640
0008
,
1000
0400
00160
0002
,
99000
0010
0001
0100
G:=sub<GL(4,GF(127))| [1,0,0,0,0,32,0,0,0,0,64,0,0,0,0,8],[1,0,0,0,0,4,0,0,0,0,16,0,0,0,0,2],[99,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C723C9 in GAP, Magma, Sage, TeX

C_7^2\rtimes_3C_9
% in TeX

G:=Group("C7^2:3C9");
// GroupNames label

G:=SmallGroup(441,7);
// by ID

G=gap.SmallGroup(441,7);
# by ID

G:=PCGroup([4,-3,-3,-7,-7,12,434,2019]);
// Polycyclic

G:=Group<a,b,c|a^7=b^7=c^9=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C723C9 in TeX

׿
×
𝔽